£

LSEVIER

Available online at www.sciencedirect.com

sc.euca@p.“cr.

Int. J. Production Economics 95 (2005) 203-213

international journal of

production
economics

www.clsevier.com/locate/dsw

The optimal inventory policies under permissible delay in
payments depending on the ordering quantity

Kun-Jen Chung®*, Suresh Kumar Goyal®, Yung-Fu Huang®

& Department of Industrial Management, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4,
Taipei, Taiwan, ROC
® Department of Decision Science and MIS, John Molson School of Business, Concordia University, Québec, Canada
¢ Department of Business Administration, Chaoyang University of Technology, Taichung, Taiwan, ROC

Received 28 March 2003; accepted 15 December 2003

Abstract

This paper deals with the problem of determining the economic order quantity under conditions of permissible delay
in payments. The delay in payments depends on the quantity ordered. When the order quantity is less than the quantity
at which the delay in payments is permitted, the payment for the item must be made immediately. Otherwise, the fixed
trade credit period is permitted. The minimization of the total variable cost per unit of time is taken as the objective
function. An algorithm to determine the economic order quantity is developed. The results obtained in this paper

generalize some already published results.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The classical EOQ model assumes that the
retailer’s capital is unconstrained and the retailer
must be paid for the items as soon as the items
were received. However, the supplier may offer the
retailer a delay period, that is the trade credit
period, in settling the accounts. The effect of
supplier credit policies on optimal order quantity
has received the attention of many researchers; see
Aggarwal and Jaggi (1995), Chang and Dye
(2001), Chang et al. (2001), Chen and Chuang

*Corresponding author. Tel.: +886-2-7376342; fax: + 886-2-
737-6344.
E-mail address: kjchung@im.ntust.edu.tw (K.-J. Chung).

(1999), Chu et al. (1998), Chung (1998a, b, 2000),
Goyal (1985), Jamal et al. (1997, 2000), Khouja
and Mehrez (1996), Liao et al. (2000), Sarker et al.
(2000a,b) and Shah and Shah (1998). Recently,
Arcelus et al. (2003) modeled the retailer’s profit-
maximizing retail promotion strategy, when con-
fronted with a vendor’s trade promotion offer of
credit and/or price discount on the purchase of
regular or perishable merchandise. Abad and Jaggi
(2003) developed a joint approach to determine for
the seller the optimal unit price and the length
of the credit period when end demand is price
sensitive. Chung and Huang (2003) investigated
this issue within EPQ framework and developed
an efficient solution procedure to determine the
optimal cycle time for the retailer. Salameh et al.
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(2003) extended this issue to continuous review
inventory model.

In 1996, Khouja and Mehrez investigated the
effect of supplier credit policies on the optimal
order quantity within the economic order quantity
framework. The supplier credit policies fall into
two categories: (1) supplier credit policies where
credit terms are independent of the order quantity
and (2) supplier credit policies where credit terms
are linked to the order quantity. In the latter case,
suppliers use favorable credit terms to encourage
customers to order large quantities. In other
words, the favorable credit terms apply only at
large order quantities and are used in place of
quantity discounts. Four supplier credit policies
are introduced in Khouja and Mehrez (1996). The
credit terms of the first two policies are indepen-
dent of the order quantity. The last two credit
policies link credit terms to the order quantity. The
purpose of this paper is to discuss a few different
credit policies and extend the work of Khouja and
Mehrez (1996).

2. Model formulation

In this section, we want to develop the inventory
model under permissible delay in payments to take
the order quantity into account. When the order
quantity is less than the fixed quantity at which the
delay in payments is permitted (Q< W), the
payment for the items must be made immediately.
Otherwise, the fixed trade credit period M is
permitted. In addition, this paper tries to consider
some alternations to move capital to match the
policy of enterprise. We assume that the retailer
will borrow 100% purchasing cost from the bank
to pay off the account and the retailer does not
return money to the bank until the end of the
inventory cycle when the retailer needs cash to pay
off the account. The following notation and
assumptions will be used throughout.

2.1. Notation

Q  order quantity

D annual demand

W the fixed quantity at which the delay in
payments is permitted

A cost of placing one order
c unit purchasing price per item
s unit selling price per item
h unit stock holding cost per item per year
excluding interest charges
interest rate that can be earned per $ per year
interest rate charged per $ investment in
inventory per year
M trade credit period in years
the cycle time in years
*  the optimal cycle time of TVC(T)

'UN('D\‘

NN

2.2. Assumptions

(1) Demand rate is known and constant.

(2) Shortages are not allowed.

(3) Time period is infinite.

(4) Replenishments are instantaneous with a
known and constant lead time.

(5) When the retailer must pay the amount of
purchasing cost to the supplier, the retailer
will borrow 100% purchasing cost from the
bank to pay off the account with rate 1.
When T > M, the retailer returns money to
the bank at the end of the inventory cycle.
However, when T <M, the retailer returns
money to the bank at 7= M.

(6) If the credit period is shorter than the cycle
length, the retailer can sell the items,
accumulate sales revenue and earn interest
with rate I, throughout the inventory cycle.

(7) szcand Iy =1..

The total annual variable cost consists of the
following elements. Two situations may arise. (I)
W/D<M and (II) W/D > M.

(I) Suppose that W/D< M.

(1) Annual ordering cost = £.

(2) Annual stock holding cost (excluding inter-
est charges) = 211

(3) There are three cases to occur in interest
payable per year.

Case I. 0<T< W /D, shown in Fig. 1.

In this case, the retailer must pay the amount of
purchasing cost as soon as the items were received
since Q<W. According to assumption (5), the
retailer will borrow 100% purchasing cost, ¢DT,
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Inventory investment

T Time

Fig. 1. The total accumulation of interest payable when
0<T<W/D.

from the bank to pay off the account with rate I,
and return money to the bank at the end of the
inventory cycle. So, the loan period is 7.

Interest payable per cycle = cI,DT?.

Interest payable per year = cI,DT.

Case II. W/D<T<M.

In this case, the fixed trade credit period M is
permitted since Q= W. And the retailer do not
need to loan anything from the bank at the end of
credit period because the cycle length is not longer
than the credit period. So, Interest payable per
year = 0.

Case III. M <T, shown in Fig. 2.

In this case, the fixed trade credit period M is
permitted since Q> W. According to assumption
(5), the retailer will borrow 100% purchasing
cost, ¢DT, from the bank to pay off the account
with rate I, and return money to the bank at the
end of the inventory cycle. So the loan period is
(T — M).

Interest payable per cycle = c[, DT(T — M).

Interest payable per year = cI, D(T — M).

(4) There are three cases to occur in interest
earned per year.

Case I. 0< T < W /D, shown in Fig. 3.

According to assumption (6), the retailer can sell
the items and earn interest with rate /. throughout
the inventory cycle.

Interest earned per cycle = s/ fOT Dtdt = DTzzslc.
Interest earned per year = Dgslc'

Case II. W/D<T <M, shown in Fig. 4.

In this case, the retailer can sell the items and
earn interest with rate /. until the end of the trade
credit period M.

A
DcT

DT

Inventory investment

»
»

M T Time

Fig. 2. The total accumulation of interest payable when M < T.
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Inventory investment

M T Time

Fig. 3. The total accumulation of interest earned when
0<T<W/Dor M<T.

DsT

Inventory investment

T M Time

Fig. 4. The total accumulation of interest earned when T'< M.

Interest earned per cycle = sIe[DTT2 + DT (M —
T)] = DTsl.(M —% .

Interest earned per year = Dsl.(M — % .

Case III. M <T, shown in Fig. 3.

In this case, the interest earned is similar to
case [.

Interest earned per cycle = sl. fOT Dtdt = %Z”e.

DTsl.

Interest earned per year = =5
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From the above, the total annual variable cost
function for the retailer can be expressed as

TVC(T) = ordering cost + stock-holding cost
+ interest payable — interest earned.

We show that the annual total variable cost
function, TVC(T), is given by

TVC(T) = TVC(T) if 0<T<W/D, (1a)
TVC(T) = TVCy(T) if W/D<T<M, (1b)
TVC(T) = TVCy(T) if M<T, (Ic)
where

A DTh DTsl,
TVC(T) = &4 5+ chp DT — ==, )

A DTh T
TVCy(T) = T + > Dsl, (M - E) 3)
and
vy = 44 2T l,D(T — M) — DTsle

T 2 2

4

All TVC(T), TVCy(T) and TVC;(T) are defined
on T>0. TVC(W/D)>TVCyW/D) and
TVCy(M) = TVC3(M). Hence TVC(T) is well-
defined and continuous except T = W/D. We
also find TVC|(T)>TVCs(T) for all T>0.
Eqgs. (2)—(4) yield

—A  D(h+ 2cl, — sl.)

TVC|(T) = 5t 3 , (%)
24

TVC/(T) = 7370, (6)
—A D(h+ sl

TVCK(T) = -z % @)
2

TVCY(T) = 7“‘3‘ >0, ()
—A4  D(h+ 2cl, — sl.)

TVCYT) = — + P )
T 2

and
24

TVCY(T) = 73>0. (10)

Egs. (6), (8) and (10) imply that TVC(T),
TVCy(T) and TVCs(T) are convex on 7T > 0.

(IT) Suppose that W /D > M.
If W/D> M, Egs. l(a—) will be modified as
follows:

TVC(T) =TVC(T) if 0<T<W/D, (11a)
TVC(T) = TVCs(T) if W/D<LT. (11b)
TVC(T) is continuous except T = W /D.

3. Decision rule of the optimal cycle time when
M=W/D

Recall
24
% ok
=1 = \/D(h + 2¢l, — sl.)
if h+42cly —sI. >0 (12)
and

. | 24

Then TVC|(T}) = TVCY(TY) = TVCy(T5) = 0.
We also have the following result.

Theorem 1. (I) Suppose that h+ 2cl, <sl.. Then
T* = owo. (When T* = oo, it means that the
retailer prefers to keep money and does not return
money to the bank.)

() Suppose that h+ 2cl, = sl.. Then

(A) If T =M, then T* = 0.
(B) If W/D<TS <M, there are two cases to
occur:
(a) If TVCy(TS)< — cI,DM, then T* = T5'.
(b) If TVCy(T5) > —cI, DM, then T* = 0.
(C) If TS <W /D, there are two cases to occur:
(@) If TVCyW /D)< — cI,DM, then T* =
W /D.
(b) If TVCy(W /D) > —cl, DM, then T* =
0.

Proof. (I) If i+ 2cl,<sl., Eq.(9) implies that
TVC;(T) is decreasing on T > 0. Hence Egs. 1(a,
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b, c¢) reveal that TVC(T) is decreasing on T > M.
Since

lim TVC(T)

= lim TVCsi(T)
T—- w
. DT
= —cl,DM + Th—l;rio T(h + 2cl, — sl;)
= - (14)
and
lim TVC(T)
T-0t
= lim TVC(T)
T -0+

. A DT
= Tll_{l'ol+ ? + 7(//1 + 2CIp —sl;)

= . (15)

Egs. (14) and (15) imply T* = .

(I1) (A) If h+2cl,=sl. and Ty >M, then
TVC(T), TVC,y(T) and TVC;(T) are decreasing
on (0, W/D), [W /D, M] and [M, o), respectively.
Hence, TVC(T) is decreasing on 7 >0. Conse-
quently 7* = 0.

(B) If h+2cl, = sI. and W/D<Ty <M, then
Egs. (5), (7) and (9) imply

(i) TVC(T) is decreasing on (0, W /D).
(ii) TVCy(T) is decreasing on [W/D,Ty] and
increasing on [T5, M].
(iii)) TVCs3(T) is decreasing on [M, o).

Since limy_, , TVC(T) = limy_, ., TVCs(T) =
—cl, DM and TVCy(T) has the minimum value
at T = T on [W/D, M], we have

(a) If TVCy(TY)< — cI,DM, then T* = T;'.
(b) If TVCy(T5) > —cI,DM, then T* = 0.

(C) If h+2cl,=sl, and TS <W/D, then
Egs. (5), (7) and (9) imply

(i) TVC(T) is decreasing on (0, W /D).
(il) TVCy(T) is increasing on [W /D, M].
(iii) TVCs(T) is decreasing on [M, o).

Since lim7_ ., TVC(T) =limy_ ., TVCs(T) =
—clpDM and TVCy(T) has the minimum value

at T= W/D on [W/D, M], we have

(a) I TVCy(W /D)< — cI,DM, then T* = W /D.
(b) If TVCy(W /D) > —cI,DM, then T* = o0. O

Based on Theorem 1, from now on, we assume
h+ 2cI, > sI.. Consequently, T} and T5 are well-
defined. By the convexity of TVC/(T) (i = 1,2,3),
we see

<0 if T<TY, (16a)
TVC(T) =0 if T =T¥, (16b)

>0 if T>TF, (16¢)

<0 if T<Ty, (17a)
TVCY(T){ =0 if T =T%, (17b)

>0 if T>T) (17¢)
and

<0 if T<TY, (18a)
TVCYT){ =0 if T =T}, (18b)

>0 if T>Tf. (18¢)

Eqgs. 16(a—)-18(a—) imply that TVC(T) is de-
creasing on (0, 77] and increasing on [T*, c0) for
all i =1,2,3. Egs. (5), (7) and (9) yield that

—24 2/D(h + 2cI, — s,
TVC, (E) _ 24X WD 2cly k) -
D 2(W /D)
W\ =24+ W2/D(h + s,
VG, (—) _ 224+ /DU + ske) 20)
D 2(W /D)
—2A + DM?*(h + s,
TVC,(M) = SaLAR 1)
and
—2A + DM?*(h + 2cl, — slI.)
TVC,(M) = 2(MZ P (22)
Furthermore, we let
WZ
Al = —2A +?(h+2CIp _Sle), (23)
WZ
Ay = =24 + ?(h + s1,), (24)
Ay = =24 + DM*(h + sI.) (25)
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and
Ay = =24+ DM*(h + 2cI, — sL). (26)

Eqgs. (23)-(26) yield that 44> 4, and 43> 4,. We
also have

Ay >0 if and only if 77"<W/D, 27
A, >0 if and only if 75 <W/D, (28)
A3>0 if and only if 75 <M, (29)
A4>0 if and only if 75 <M. (30)

Therefore, we have the following results.

Theorem 2. Suppose that h+ 2cl, > sl.. Then

(A) If A1>0, 4,20, A3=0 and A44=0, then
TVC(T*) = min{TVC(T*), TVC(W /D)}.
Hence T* is T or W /D associated with the
least cost.

B) If A41>0, 4,<0, A3=0 and A4=0, then
TVC(T*) = min{TVC(T*), TVC(T})}.
Hence T* is T} or Ty associated with the least
cost.

©C) If 4,>0, 4,<0, 43<0 and A44=0, then
TVC(T*) = min{TVC(T?), TVC(M)}.
Hence T* is T} or M associated with the least
cost.

(D) If 41<0, 4,20, A3=0 and A4=0, then
TVC(T*) = TVC(W /D) and T* = W /D.

(E) If 41<0, 4,20, A43=0 and A4<0, then
TVC(T*) = min{TVC(W /D), TVC(T¥)}.
Hence T* is W /D or T associated with the
least cost.

(F) If A41<0, 4,<0, A3=0 and A4=0, then
TVC(T*) = TVC(TY) and T* = T#.

(G) If 4,<0, 4,<0, A3=0 and A4<0, then
TVC(T*) = min{TVC(T), TVC(T)}.
Hence T* is TS or T5 associated with the least
cost.

(H) If 4,<0, 4,<0, A3<0 and A4=0, then
TVC(T*) = TVC(M) and T* = M.

M If 4:<0, 4,<0, A3<0 and A4<0, then
TVC(T*) = TVC(TY) and T* = T#.

Proof. (A)If A, >0, 4,>0, A3>0 and 44>0. So
TVC,(W/D)>0, TVC,(W/D)=0, TVC,(M)=0

and TVC;(M)>0. Egs.(27)-(30) imply that
TY¥<W/D, TYy<W/D, T¥<M and T;<M,
respectively. Furthermore, Egs. 16(a—)-18(a—)
imply that

(1) TVC;5(T) is increasing on [M, o0).
(il) TVCy(T) is increasing on [W /D, M].
(iii) TVC;(T) is decreasing on (0, 7] and increas-
ing on [T}, W /D).

Combining (i)—(iii), we conclude that TVC(T)
has the minimum value at 7= T}* on (0, W/D)
and TVC(T) has the minimum value at 7 = W /D
on [W/D, «). Hence

TVC(T*) = min{TVC(T}"), TVC(W /D)}.

Consequently, T* is T} or W /D associated with
the least cost.

(B) If 4,>0, 4,<0, A35=0 and A44>0. So
TVC(W/D)>0, TVCYW /D)<0, TVC,(M)=0
and TVC;(M)>0. Egs.(27)-(30) imply that
T*<W/D, Tf>W/D, T¥<M and T¥<M,
respectively. Furthermore, Egs. 16(a—c)-18(a—)
imply that

(1) TVC3(T) is increasing on [M, o).
(i) TVCy(T) is decreasing on [W/D,T5] and
increasing on [75, M].
(iii) TVC(T) is decreasing on (0, 7] and increas-
ing on [T}, W /D).

Combining (i)-(iii), we conclude that TVC(T)
has the minimum value at 7= T;* on (0, W /D)
and TVC(T) has the minimum value at 7 = T on
[W/D, o). Hence

TVC(T*) = min{TVC(T}"), TVC(TF)}.

Consequently, 7% is T}* or T5" associated with the
least cost.

(C) If 4,>0, 4,<0, 43<0 and 44=0. So
TVC|(W/D)>0, TVCy(W /D)<0, TVC,(M)<0
and TVC;(M)=0. Egs.(27)+(30) imply that
TY¥<W/D, Ty >W/D, Tf>M and Ty<M,
respectively. Furthermore, Egs. 16(a—)-18(a—)
imply that

(1) TVC;5(T) is increasing on [M, o0).
(i) TVCy(T) is decreasing on [W /D, M].
(iii) TVC(T) is decreasing on (0, 7}] and increas-
ing on [T}, W /D).



K.-J. Chung et al. | Int. J. Production Economics 95 (2005) 203-213 209

Combining (i)—(iii), we conclude that TVC(T)
has the minimum value at 7= T}* on (0, W/D)
and TVC(T) has the minimum value at 7 = M on
[W/D, o). Hence

TVC(T*) = min{TVC(T}), TVC(M)}.

Consequently, 7* is T} or M associated with the
least cost.

(D) If 41<0, 4,20, 43=0 and 44>=0. So
TVC{(W/D)<0, TVCy(W/D)>0, TVCL(M)=>0
and TVC;(M)>0. Egs.(27)-(30) imply that
T¥>W/D, TE<W/D, Ti<M and T¥<M,
respectively. Furthermore, Egs. 16(a—c)-18(a—)
imply that

(1) TVC;3(T) is increasing on [M, o).
(il) TVCy(T) is increasing on [W /D, M].
(iii) TVC(T) is decreasing on (0, W /D).

Combining (i) and (ii) implies that TVC(T) has
the minimum value at 7= W/D on [W /D, «).
From (iii) and TVC;(W/D)>TVCy(W /D), we
conclude that TVC(T) has the minimum value at
T =W/D on (0, 0). Hence T* = W/D.

(E) If 4,<0, 4,20, 435>0 and 44<0. So
TVC{(W/D)<0, TVCy5(W /D)>0, TVCY(M)=>0
and TVC;(M)<0. Egs.(27)-(30) imply that
TE*>W/D, TE<W/D, T¥<M and T¥>M,
respectively. Furthermore, Egs. 16(a—)-18(a—)
imply that

(i) TVCs(T) is decreasing on [M,T5] and
increasing on [75, o).
(il) TVCy(T) is increasing on [W /D, M].
(iii) TVC(T) is decreasing on (0, W /D).

Combining (i) and (ii) yields that TVC(T) has
the minimum value at 7= W /D on [W /D, M]
and TVC(T) has the minimum value at 7' = Ty
on [M, o). From (iii)) and TVC{(W/D)>
TVC,y(W /D), we conclude that

TVC(T*) = min{TVC(W /D), TVC(T)}.

Consequently, 7% is W /D or T5 associated with
the least cost.

(F) If 4,<0, 4,<0, 45=0 and 44>=0. So
TVC,(W/D)<0, TVCy(W/D)<0, TVC)(M)>0
and TVC;(M)>0. Egs.(27)-(30) imply that
T¥>W/D, T}>W/D, T¥<M and T}<M,

respectively. Furthermore, Egs. 16(a—)-18(a—)
imply that

(1) TVC3(T) is increasing on [M, o0).
(i) TVCy(T) is decreasing on [W/D,T5] and
increasing on [T, M].
(iii) TVC(T) is decreasing on (0, W /D).

Since TVC(W /D) > TVCy(W /D), combining
(1)—(i1) implies that TVC(T) has the minimum
value at 7= T3 on (0, o). Consequently, 7% =
Ts.
(G) If 4,<0, 4,<0, 4320 and A44<0. So
TVC|(W/D)<0, TVC,(W/D)<0, TVC,(M)=0
and TVC;(M)<0. Egs.(27)+(30) imply that
T*>W/D, T¥>W/D, T*<M and T}> M,
respectively. Furthermore, Egs. 16(a—)-18(a—)
imply that

(i) TVCs(T) is decreasing on [M,T5] and
increasing on [75, o0).
(i) TVCy(T) is decreasing on [W/D,Ty] and
increasing on [75, M].
(iii) TVC(T) is decreasing on (0, W /D).

Combining (i)-(iii), we conclude that TVC(T)
has the minimum value at 7 = 75 on (0, M] and
TVC(T) has the minimum value at 7 = 75 on
[M, o). Hence

TVC(T*) = min{TVC(T5), TVC(T)}.

Consequently, T is 75 or T5 associated with the
least cost.

(H) If 4;<0, 4,<0, A3<0 and 44>0. So
TVC|(W/D)<0, TVC,(W /D)<0, TVC,(M)<0
and TVC;(M)>0. Egs.(27)+(30) imply that
TY=w/D, Ty >W/D, Ty >M and T§y<M,
respectively. Furthermore, Egs. 16(a—)-18(a—)
imply that

(1) TVC3(T) is increasing on [M, o0).
(if) TVCy(T) is decreasing on [W /D, M].
(iii) TVC(T) is decreasing on (0, W /D).

Combining (i)—(iii), we conclude that TVC(T)
has the minimum value at T=M on (0, o).
Consequently, 7% = M.

I If 4,<0, 4,<0, A43<0 and 44<0. So
TVC{ (W /D)<0, TVC,(W /D)<0, TVCy(M)<0
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and TVC;(M)<0. Egs.(27)-(30) imply that
T*>W/D, Tf>W/D, Tf>M and T¥>M,
respectively. Furthermore, Eq. 16(a—)-18(a—)
imply that

(i) TVCs(T) is decreasing on [M,T5] and

increasing on [T, o0).

(il) TVCy(T) is decreasing on [W /D, M].
(iii) TVC(T) is decreasing on (0, W /D).

Combining (i)—(iii), we conclude that TVC(T)
has the minimum value at 7 =75 on (0, o).
Consequently, 7% = T5.

Combining the above arguments, we have
completed the proof of Theorem 2. [

4. Decision rule of the optimal cycle time when
M<W/D

When M < W /D, TVC(T) can be expressed as
follows:

TVC(T)
TVCs(T)

if 0<T<W/D, (lla)

TVC(T) = { if W/D<T. (11b)

Then we have the following result.

Theorem 3. (I) Suppose that h+ 2cl,<sl.. Then
T* = .

(IT) Suppose that h+ 2cl, = sl.. Then T* = 0.
Proof. (I) See Theorem 1-(I).

(1) If h + 2cl, = s, Eqgs. (5) and (9) imply that
TVC(T) and TVC;(T) is decreasing on (0, W /D)
and [W/D, «0). Hence, TVC(T) is decreasing on
(0, 0). Consequently, T* = c0. [

Eqgs. (5) and (9) yield that

(N e (Y
TVC1< o) =TVC (5

=24+ W?/D(h+ 2cl, — s.)
2(w /Dy’ '

For convenience, we let 4 = A4, = —24 + %z(h +
2cl, — sl;). Then we have the following result.

Theorem 4. Suppose that h+ 2cl, > sl.. Then
(A) If 4> 0, then

TVC(T*) = min{TVC(T*), TVC(W /D)}.

Hence T* is T} or W /D associated with the

least cost.

(B) If A<0, then TVC(T*) = TVC(T}) and T* =
Ts.

(C) If A=0, then TVC(T*)=TVC(W /D) and
T* = W/D.

Proof. (A) If A4>0, then TVC{(W/D)=

TVCy(W /D) > 0. Egs. 16(a—c), 18(a—) and (27)
imply that

() 17y =T <wW/D.
(i) TVC;3(T) is increasing on [W /D, o).
(iii) TVC(T) is decreasing on (0, 7] and increas-
ing on [T}, W /D).

Therefore, TVC(T) has the minimum value at
T =T} on (0, W/D) and TVC(T) has the mini-
mum value at T = W /D on [W/D, o). Hence

TVC(T*) = min{TVC(T}*), TVC(W /D)}.

Consequently, 7* is T}° or W /D associated with
the least cost.
(B) If 4<0, then

TVC|(W /D) = TVC,(W /D)<O0.
Egs. 16(a—), 18(a—) and (27) imply that
() Ty =T >wW/D.
(i) TVCs(T) is decreasing on [W/D,T5] and

increasing on [T, c0).
(iii) TVC(T) is decreasing on (0, W /D).

Combining (i)—(iii), we conclude that TVC(T)
has the minimum value at 7 =75 on (0, o).
Consequently, 7% = T5.

(C) If 4 =0, then

TVC|(W /D) =TVC,(W /D) = 0.
Egs. 16(a—), 18(a—) and (27) imply that

() T* = T} = w/D.
(il) TVC;(T) is increasing on [W /D, o).
(iii) TVC(T) is decreasing on (0, W /D).

Since TVC,(W /D) > TVC3(W /D), we conclude
that TVC(T) has the minimum value at 7 = W /D
on (0, o). Consequently, T* = W/D.
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Combining the above arguments, we have
completed the proof of Theorem 4. [

5. The algorithm

In this section, we shall combine Sections 3 and
4 to outline the algorithm to help us to decide the
optimal cycle time and optimal order quantity.

The algorithm

Step 1: If M <W /D, then go to Step 5.
Step 2: If h+ 2cl,<sl,, then T* = .
Step 3: If h+ 2cl, = sl and

(i) Ty =M, then T* = 0.
(i) W/DST}<M if TVCy(TH< — cI,DM,
then 7% = T;'. Otherwise, 7% = 0.
(i) T¥ <W/D if TVCy(W /D)< — cI,DM, then
T* = W/D. Otherwise, T* = 0.

Step 4: If h + 2cl, > sl. and

(1) 4,>0, 4,=0, 430 and 44>=0, then T* is
T} or W /D associated with the least cost.
(i) 41 >0, A4,<0, 430 and 44>0, then T* is
T or T5 associated with the least cost.
(iii) 4, >0, 4,<0, A43<0and A4>0, then T* is
T} or M associated with the least cost.
(iv) 41<0, 4,>0, 430 and 440, then T* =
W /D.
(v) 41<0, 4,=0, A3=0 and 44<0, then T* is
W /D or T§ associated with the least cost.
(vi) 4;<0, 4,<0, 430 and 44>0, then T* =
T5.
(vil) 4;<0, 4><0, 430 and A4<0, then T* is
T3 or T§ associated with the least cost.
(viii) 4;<0, 4,<0, 43<0 and 44>0, then T* =
M.
(ix) 4,<0, 4,<0, 43<0 and 44<0, then T* =
Ts.

Step 5: If h + 2cl, <sl, then T* = 0.
Step 6: If h + 2cl, > sl and

(i) 4> 0, then T* is T}* or W /D associated with
the least cost.
(ii) 4<0, then T* = T¥.
(iii) 4 =0, then T* = W/D.

6. Special cases

When W =0, Egs. 1(a—) can be modified as
follows:

TVCA(T) if 0<T<M,  (3la)

v = {TVC3(T) if M<T. (31b)

Then Theorems 1 and 2 can be revised as
Theorems 5 and 6, respectively.

Theorem 5. (I) Suppose that h+ 2cly, <sl.. Then
T* = .
(II) Suppose that h+ 2cl, = sl.. Then

(A) If TS =M, then T* = 0.

(B) If T5 <M, there are two cases to occur:
(@) If TVCA(T)< — cI,DM, then T* = T5.
(b) If TVCy(T5) > —cI,DM, then T* = 0.

Theorem 6. Suppose that h+ 2cl, > sl.. Then

(A) If 44=0 and A3 >0, then T* = T5.

(B) If 44=0 and A43<0, then T* = M.

(C) If 44<0 and A3>0, then T* is TS or Ty
associated with the least cost.

(D) If 44<0 and A3<0, then T* = T5.

7. Comparisons with Goyal’s model

In this section, we assume that W = 0 and s = c.
Then h + 2cl, > cl.. Hence, Eqs. (12) and (13) can
be rewritten as

« | 24
I = D(h + cI.) (32)

and
24

Ty = \/ D(h + 2¢l, — cl.) (33)

Furthermore, Eqs. (25) and (26) can be reduced
to
Ay = =24 + DM*(h + cI.) (34)
and
Ay = =24 + DM*(h + 2¢l, — cI.). (35)
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Eqgs. (32)—(35) yield that 44>45 and T5 <Ty.
Then Theorem 2 yields the following result.

Theorem 7. Suppose that W =0 and s = c¢. Then

(A) If A4=A3>0, then T* = Tz*
(B) If As>As = 0, then T* = M.
(C) If 44320 and A3 <0, then T* = M.
(D) If 44<0 and A3<0, then T* = T.

Let 73*:\/%31)”ad T ,/D(hzTAde).
Moreover, we let T * denote the optimal cycle time
of Goyal’s model (1985).

Theorem 1 in Chung (1998a) determines the
optimal cycle time of Goyal’s model (1985) can be
described as follows:

Theorem 8. (A) If 45 > 0, then =T,
(B) If 45 <0, then T ™ T

(C)If A3 =0, then T ™ T =T, =M.
Then we have the following result.

Theorem 9. T*<T *. In fact, we have

(A) If 44> 43> 0, then T* =T " = T,* = T;".
(B) IfA4>A3—O then T* =T *M
(C) If 44=0 and A3 <0, then T*<T

(D) If As<0 and A3 <0, then T*<T*

Proof. (A) If A4>A45>0, then both Theorems 7
and 8 imply T*=T% and T" = T2 However
T* =T, Hence T* =T " =T}=T,.

B)If 44=45 =0, then both Theorems 7 and 8

imply 7* = M and T " = M. Hence T* =T " =
M.

(C) If 4420 and 45 <0, then both Theorems 7
and 8 imply 7% = M and T * = T: Since
24 + DeM?(I, -L)
D(h + clp)
24— DM?(h + cI.)
N D(h+ cI)
-~ D(h+ cl)

(T*y = (1% =

>0,

we have T* <T ™.

(D) If 44<0 and 45<0, then both Theorems 7
and 8 imply 7* = T3 and T = T . Since

(T —(1*)
24+ DeM*(I, — L) 24
D(h + cl,) D(h + 2cl, — cl)
24+ DeM*(Iy — L))(h + 2¢I, — cle) — 24(h + )
D(h + cl,)(h + 2cl, — cl.)
_ DeMP(I, — I)(h + 2cly — cl) + 2Ac(I, — 1)
D(h + cl,)(h + 2cl, — cl) 0,

we have T*<T .
Combining the above arguments, we have
completed the proof of Theorem 9. [

Theorem 9 explains that the optimal cycle time
when W =0 and s = ¢ is not longer than that of
Goyal’s model (1985).

8. Summary

This article discusses the economic order quan-
tity under conditions of permissible delay in
payments to take the order quantity into account.
If Q< W, the delay in payments is not permitted.
Otherwise, the fixed trade credit period M is
permitted. There are two cases (i) M =W /D and
(i) M<W /D to be explored. Theorems 1 and 2
give the solution procedure to find T* when
M =W /D. Theorems 3 and 4 give the solution
procedure to find 7% when M < W /D. Then, we
develop an algorithm to help us to decide T%*.
Furthermore, Theorems 5 and 6 reveal the
solution procedure to find 7% when W =0.
Finally, when W =0 and s=c, this article
develops some comparisons with Goyal’s model
(1985) and demonstrate that the optimal cycle time
is not longer than that of Goyal’s model (1985).
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